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The relation between the aperiodic solution of the Lorenz model and that of a 
stochastic anharmonic oscillator is explored. The stochastic oscillator is con- 
structed by replacing ~(t) in the Lorenz model by a stochastic variable ~'(t) of 
specified statistics. The resulting system is of course not isomorphic to the 
Lorenz model, but does share with it a number of statistical properties. Thus, 
within the confines of these measures the two systems are physically very 
similar. 
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1. I N T R O D U C T I O N  

H y d r o d y n a m i c  systems can exist in one of three pure  states of mot ion :  
s teady-s ta te  flows, regular  per iodic  flows, and  i r regular  or  aper iod ic  flows. 
The first two types of  m o t i o n  occur  mos t  often in con t ro l led  l a b o r a t o r y  
experiments .  The last type  of m o t i o n  has resisted predict ive methods ,  and  
long- t ime observa t ions  indicate  tha t  the flow pa t te rns  do  not  repeat  them- 
selves. Aper iod ic  flows are quite c o m m o n  in geophysica l  contexts ,  with the 
resul tant  uncer ta in ty  in the weather.  They have also recently been manifest  
in con t ro l led  l a b o r a t o r y  exper iments  of determinis t ic  flow fields. F o r  exam- 
ple, Ahlers and  W a l d e n  u) d e m o n s t r a t e d  exper imenta l ly  that  a Ray l e igh -  
B6nard system exhibits  a t rans i t ion  between spat ia l ly  o rdered  per iod ic  
states. Dur ing  this t rans i t ion  the fluid appears  turbulent .  The t ime interval  
between states of tu rbu len t  act ivi ty  is r andom,  as is the du ra t i on  of the tur- 
bulent  burst .  Ahlers  and  W a l d e n  in terpre t  their  exper imenta l  results in 
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terms of the random transitions between the minima of a bistable potential. 
An alternative to this kind of description may be the deterministic but 
aperiodic motion of a strange attractor solution to truncated forms of the 
hydrodynamic equations, as first constructed by Lorenz. (2) 

Lorenz developed his model by severely truncating the hydrodynamic 
equations (from an infinite number of modes to three modes) describing 
B6nard convection in the atmosphere. His interest was in the feasibility of 
very long-range weather prediction when such nonperiodic flows are 
possible. Other investigators have found that the aperiodic behavior obser- 
ved by Lorenz is also present in other dissipative nonlinear systems. For 
example, a set of equations mathematically equivalent to the Lorenz system 
arises in the analysis of laser problems leading to the possibility of optical 
chaos. (3"4! For certain values of the parameters the Lorenz system yields 
three steady states. The trajectory consists of nonperiodic circulation 
around two of these states and transitions between them (Fig. 1). These 

X 

Fig. 1. Trajectory of the Lorenz model (r = 30, elapsed time 4.5) projected onto (bottom) the 
x y  plane and (top) onto the x - z  plane. The points are the steady-state solutions (2.3). Taken 
from Ref. 6. 
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cyclic motions and transitions occur without any simple regularity or 
order. (2) 

The irregular behavior of the trajectories has motivated the study of ~ 
the Lorenz model using statistical methods. (5 9) Numerical studies have 
shown that the time averages of the state variables are independent of the 
initial conditions, even though the actual trajectory is very sensitive to 
these conditions. (3) Guided by this knowledge, Liicke {6~ undertook an 
analysis of the statistical properties of the three state variables and 
calculated their moments and correlation functions. Zippelius and Liicke ~v) 
added white noise terms to the dynamical equations and studied the 
Lorenz model as a stochastic problem. Aizawa {s) viewed the Lorenz 
dynamics itself as a stochastic process (on an appropriate time scale) 
without adding any external noise. He selected the x variable as an exam- 
ple for his study, and separated the process into two components. One 
component represents the quasiperiodic variations of the motions around 
either of the steady states. The other is the "flip-flop" process, i.e., the ran- 
dom switching between the two sets of quasiperiodic motions. By fitting the 
dynamics to a superposition of these two kinds of stochastic processes, he 
was able to calculate the probability distribution for x and for the per- 
sistence time in the vicinity of one of the steady states. 

The irregular or aperiodic solutions of the type found in the Lorenz 
model have by now been found in other few-degree-of-freedom systems and 
have been recognized as one possible signature of nonlinear behavior. 
Qualitatively analogous behavior has long been recognized as the signature 
of fluctuations driving physical systems that are in contact with their 
surroundings (i.e., systems that are not isolated). The latter view has been 
basic to the field of statistical mechanics, where it is always assumed that 
fluctuations and the resultant stochastic behavior of the system arise from a 
large number of unresolved degrees of freedom with which the system of 
interest interacts. The language often used to describe the dynamics of 
statistical mechanical systems is that of stochastic differential equations, 
wherein the fluctuations that arise from the large number of unresolved 
degrees of freedom appear as noise terms of specified statistics. 

The qualitative analogy between the irregular solutions of few-degree- 
of-freedom systems and the stochastic solutions of many-degree-of-freedom 
systems leads us to explore a possible relation between them in this paper. 
In particular, we wish to explore the possibility of associating the noise in a 
stochastic differential equations with the irregular behavior of a single 
variable in a few-degree-of-freedom system. If such a relation can be 
established, then one may tentatively conclude that the sources of noise in 
statistical mechanical systems may not always correspond to many 
unresolved degrees of freedom. 



122 Kottalarn, West, and Lindenber 9 

Knobloch (9/ constructed a second-order stochastic differential 
equation (SDE) by considering the rapidly changing state variable z to be 
a fluctuating quantity with specified statistical properties. His equation is 
analogous to that of the displacement of a stochastically driven and 
linearly damped "oscillator." The system described by this equation is 
unstable except for a single particular ratio of parameter values (cf. Sec- 
tion 2). 

In this paper we pursue the idea originated by Knobloch (9) and 
present a different stochastic analog for the Lorenz model which possesses 
a number of desirable qualitative properties. The SDE derived here is of the 
form of a nonl inear  oscillator of the Van der Pol-Duffing type (1~ driven by 
multiplicative noise. (11'~2) The potential involved in this SDE has three 
extrema corresponding to the three steady states of the Lorenz model. 

In Section 2 we present the actual reduction of the Lorenz equations 
to a SDE for an anharmonic oscillator and make the correspondence 
between the Lorenz and oscillator dynamics. We also compare our 
equations with those derived by Knobloch. (9) In Section 3 we compute the 
energy envelope ~I1'12~ of the oscillator and compare certain second-order 
quantities with those obtained via numerical simulations of the Lorenz 
system. (61 We present estimates of the mean persistence time, i,e., the 
average time that a trajectory spends near a steady state, using the 
oscillator SDE. The last section contains some concluding remarks. 

2. T H E  O S C I L L A T O R  A N A L O G Y  

Lorenz analyzed the strange attractor nature of his model in the con- 
text of a numerical study of the B6nard convection problem. (2) The non- 
periodic nature of the solution had been previously observed by 
Saltzman. (13/ The Lorenz equations can be written in the dimensionless 
form 

2 = c r y  (2.1a) 

~ = ( r -  1 ) x -  (a + 1 ) y - x z  (2.1b) 

= - b z  + x y  + x 2 (2.1c) 

Liicke/6) obtained this version of the model by the change of variable 
y * - x  = y in the original version. Here ~ is the Prandtl number and r is 
the ratio of the Rayleigh number to the critical Rayleigh number. The 
variable x is the Fourier component of the gravest velocity mode; y* 
represents the horizontal dependence of the temperature field; and z 
represents the deviation of the vertical temperature variation from the 
linear profile corresponding to steady conduction. 



Lorenz Strange Attractor 123 

The system (2.1) always has the steady-state solution 

x = y = z = 0 (2.2) 

corresponding to steady conduction. For  r < 1 this is the only steady state 
and it is stable. At r = 1 a bifurcation occurs. For r > 1, the state given by 
(2.2) is unstable and two more steady states emerge, which are stable. 
These new states are given by 

x =  + _ [ b ( r - 1 ) ]  l/z, y=O,  z = r - 1  (2.3) 

They correspond to steady rolls and remain stable for 1 < r < r r ,  where 

o r + b + 3  
r r = a -  (2.4) 

a - b - 1  

At r =  r r  a second bifurcation occurs. This is the onset of the irregular 
motion that has been associated with turbulence. (14) For  r > r T  linear 
stability analysis indicates that all the above steady states are locally 
unstable. Since there is no stable steady state in this parameter regime, 
time-dependent solutions such as limit cycles are expected. However, the 
presence of limit cycles can be demonstrated only for certain values of 
r > r  r. For other values of r the trajectory is nonperiodic and wanders 
around in the vicinity of the three unstable steady states (Fig. 1). (2"6) The 
trajectory is deflected when approaching the state given by Eq. (2.2), 
whereas it is somewhat attracted by and circles around the states given by 
Eq. (2.3). Mathematically this behavior is a manifestation of the fact that 
the fixed point (0, 0, 0) has a one-dimensional unstable manifold, whereas 
the two other fixed points have two-dimensional unstable manifolds. 

In the above regime the Lorenz trajectory visits almost every point in 
certain domains of phase space. Based on this observation, Knobloch (9/ 
interpreted the Lorenz dynamics as an ergodic (stochastic) process in 
which all three state variables are random functions of time. Further, he 
eliminated one of the state variables, z(t) ,  from the equations and replaced 
it with an external noise. This procedure assumes that the evolution of z is 
independent of x and y. Specifically, he defined co(t) as 

co(t) = ~ (z  - Zo) (2.5) 

where zo is the time-average of z obtained from numerical simulations. 
Interpreting co(t) as a fluctuating quantity with specified statistics, he 
derived the equations 

2 = a y  (2.6a) 

P = A x  - By  - xco(t) (2.6b) 
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where 
A = a(r - 1 - Zo) > 0 (2.7) 

and 
B = a +  1 (2.8) 

The inequality in (2.7) is derived by Knobloch/9t Equations (2.6) describe 
a mechanical system moving under the influence of the potential 

I~( X ) = -- l a x  2 (2.9) 

and also driven by a fluctuating force and linear dissipation. The potential 
l~(x) is always negative and has a maximum at x = 0. It is well known that 
such a system is globally unstable in the absence of fluctuations. In the 
presence of fluctuations possessing a particular nonzero correlation time 
this global instability is suppressed. This is the value chosen by Knobloch 
in his analysis. 

Looking at the projections of the trajectories on the x - y  plane (Fig. 1) 
and the steady states of the Lorentz model, we find them to be analogous 
to the trajectories and equilibrium states of a mechanical oscillator in a 
bistable potential3 Is/ The trajectories of the undamped deterministic 
oscillator are closed orbits corresponding to both global and local 
oscillations. In other words, some orbits enclose only one of the two 
minima of the potential and others enclose all three extrema. If in addition 
the oscillator is driven by fluctuations and dissipation, then one would 
expect the oscillator to shift from one localized orbit to another at irregular 
times and thus mimic the behavior of the Lorenz system. We can arrive at 
such an equation for 2 and ~ if we take ~ (instead of z) as a fluctuating 
quantity. Specifically, we replace 2 by b~(t), where {(t) is a stationary ran- 
dom process: 

~ b~(t) (2.10) 

We stress that (2.10) is not meant to imply that ~(t) and ~(t) necessarily 
share the same statistical behavior. Rather, we wish to explore whether the 
replacement (2.10) leads to a model that shares certain moment properties 
with the Lorenz model. Then Eq. (2.1c) yields 

1 x y q _ ~ X  2 z = ~  - ~ ( t )  (2.11) 

Substituting this into (2.1b), we obtain the set of equations 

2 = cry (2.12a) 

1 2 lx3 - ( ~ r + l )  - - ~ x y + x ~ ( t )  (2.12b) ))= ( r -  1 ) x - ~  y 
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Equations (2.12) describe a damped anharmonic mechanical oscillator with 
the potential/~5t 

1 1 a 
V(x)  = - -~  (r - 1)x 2 + ~ x (2.13) 

and driven by multiplicative noise. For r < 1 this potential has a single 
minimum at x = 0 and therefore the stationary distribution of Eq. (2.12) is 
expected to be unimodal and peaked at x = y  = 0, the state corresponding 
to steady conduction in the B6nard problem. When r = 1 the anharmonic 
oscillator undergoes a bifurcation. For r > l, V(x)  has a maximum at x = 0 
and two minima. The locations of these minima correspond precisely to the 
states given by Eq. (2.3). However, the oscillator states remain stable for all 
values of r > 1, unlike those of the Lorentz system. Thus, the second bifur- 
cation occurring in the Lorenz model at r r does not occur in the oscillator 
equations (2.12). Nevertheless, we will see that the two systems share some 
interesting qualitative features. 

The Lorenz equations (2.1) have two symmetry properties that con- 
strain the trajectories. Lficke (6) made use of these symmetry properties to 
derive relations between the time-averaged moments of the variables x, y, 
and z. The set (2.1) possesses the property of time translational invariance. 
This symmetry is also a property of the ensemble represented by Eq. (2.12) 
and is manifest in the stationarity of the SDE. In other words, Eqs. (2.1) 
are autonomous differential equations and Eqs. (2.12) are autonomous 
stochastic differential equations because if(t) has been chosen to be 
stationary. Another important property is the invariance under the parity 
operation 

(x, y, z) ~ ( - x ,  - y ,  z) (2.14) 

satisfied by the Lorenz equations. The oscillator equations also possess this 
symmetry. 

Starting from the Lorenz equations (2.1) and using these symmetry 
properties, LiJcke (6/ obtained the following relationships between the time- 
averaged moments. If we denote (Ykylz m) by (k, l, m) ,  then 

k a ( k -  1, l+  1, m )  

+ l [ ( r -  1 ) ( k +  1, I -  1, m ) -  ( a +  1)(k, l, m ) -  ( k +  1, l -  1, m +  1) ]  

+ m [ ( k + l , l + l , m - 1 ) + ( k + 2 ,  l , m - 1 ) - b ( k , l , m ) ] = O  (2.15) 

These relations do not form a closed set and therefore they cannot be 
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solved completely. However, Liicke was able to obtain several simple 
relations between the low-order moments: 

(xky)  = 0, k = 0 ,  _+l .... (2.16a) 

( x 2 ) = b ( z )  (2.16b) 

(xyz)  = - ( a  + 1 ) (y  2) (2.16c) 

(x(x + y)z)  = b(z 2) (2.16d) 

(x2z) = or(y2) + (r - 1)(x 2) (2.16e) 

b(xZz  ) --- 2a(xyz ) + (x  4) (2.16f) 

We can derive similar relations between the moments of x, y, and z if we 
augment the oscillator equations (2.12) with Eq. (2.1c) for ~ and consider 
the resulting set as a system of SDEs in three variables. The stationary 
moments of this system satisfy 

[ 1 
k a ( k - l , l + l , m ) + l  ( r - 1 ) ( k + l , l - l , m ) - - ~ ) ( k + 3 ,  l - l , m )  

1 
- ( ~ +  l)(k, Z, m) - ~  (k+2,  l, m) 

( x k + l y  l zm~( t ) ) l+m[-b(k , l ,m)  + 

+ (k + l , l+ l , m - 1 )  + (k + 2, l , m - 1 ) ] = O  (2.17) 

Certain special cases (e.g., l=0 ,  m = 0 )  of Eq. (2.17) correspond to the 
exact equations (2.16a), (2.16b), (2.16d), (2.16f). We are not able to obtain 
(2.16c) and (2.16e) from Eq. (2.17). 

Our purpose is to compare the time-averaged moments of the state 
variables of the Lorenz model and the corresponding ensemble average of 
the stationary process described by Eq. (2.12). If exact agreement is desired, 
the statistical properties of ~(t) must of course exactly match those of 
(l/b) ~(t) [cf. Eq. (2.10)]. Equation (2.12) is a set of nonlinear SDEs. Its 
corresponding stationary distribution cannot be obtained in closed form 
even under simplifying assumptions about the statistics of ~(t). However, if 
~(t) is taken to be a delta-correlated Gaussian process (white noise), then 
one can use various approximation techniques to find analytic measures for 
the comparison (cf. Section 3). 

If ~(t) is taken to be white noise, then Eq. (2.12) is a special case of the 
Van der Pol-Duffing oscillator studied by Wiesenfeld and Knobloch. (111 
They studied a general problem of the form (2.12) with arbitrary coef- 
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ficients and they determined the conditions under which a stationary dis- 
tribution can exist. Equation (2.12) satisfies the conditions they established 
for the existence of a normalizable stationary distribution. Wiesenfeld and 
Knobloch constructed the stationary distribution for weak damping. When 
the potential is bistable, the distribution is bimodal, as expected, with a 
saddle point at the origin. This behavior correctly depicts the structure of 
the projected trajectories of the Lorenz model. 

3. E N E R G Y  E N V E L O P E  A N D  P E R S I S T E N C E  T I M E  

In this section we take ~(t) to be a Gaussian random function 
satisfying 

(~( t ) )  = 0  (3.1) 

and 

(if(t) [ ( t -  r ) )  = 2DS(r) (3.2) 

We calculate the statistical properties of the energy envelope (~1'12) for the 
oscillator and compare the results with the corresponding quantities in the 
Lorenz model. The probability distribution P(x, y, t) for the displacement 
x and momentum y of the oscillator satisfies the Fokker-Planck 
equation (16) 

y , t )=  (r-1)x- x 3 - -  
8y 

+ 2 l+y y Dx2- y  P(x,y, t)  (3.3) 

The stationary distribution is obtained by setting the right-hand side of 
Eq. (3.3) to zero. The resulting partial differential equation cannot be 
solved analytically, and even obtaining a numerical solution is difficult. 
Instead, we derive an approximate equation for the energy envelope of the 
oscillator and compute its average. Equation (2.12) in (x, y) space is trans- 
formed to (x, E) space by the change of variable (~7) 

E(x, y) = �89 2 + V(x) (3.4) 

The SDE then becomes 

(S) 2 =  {2er iE-  g(y)]} 1/2 

L'=--2(~r+1+~)C2) [E-V(x)]q-x{2a[E-V(x)]}I /2~(t)  (3.5) 

822/46/I 2 9 
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where the (S) in Eq. (3.5) indicates that the equation has been written 
using the Stratonovich stochastic calculus. (17) 

The Fokker-Planck equation corresponding to Eq. (3.5) is 

0 Wl(x,E, t )= (2or) 1/2 [E-V(x)] I /2+2 a + l +  [ E - V ( x ) ]  ~-t -g-i 

} - D a x  2 ;+2aDxZ--~-ET[E-V(x)] Wl(x,E,t)  (3.6) 

where W l ( X  , E, t) dx dE= P(x, y, t) dx dy. The joint probability density 
W~(x, E, t) can be written as the product 

w,  (x, e,  t) = W2(x, t l e)  w ( L  t) (3.7) 

in terms of the conditional probability density W2(x, tiE) that the 
oscillator displacement is x at time t given that its energy envelope is E and 
the probability W(E, t) that the energy envelope is E at time t irrespective 
of the displacement. Equation (3.6) is an equivalent representation of 
Eq. (2.12). To proceed further, we invoke an argument originally due to 
Stratonovich that W2(x, tiE) is proportional to the time spent at x by the 
oscillator whose energy envelope is E. The time spent at x is in turn inver- 
sely proportional to the velocity at x: 

1 
Wz(x, tiE) oc [ E -  vt "7~/2 (3.8) 

This approximation is valid if the circulation of the phase point within a 
given orbit is much faster than the shifting between orbits induced by fluc- 
tuations and dissipative effects. We assume that this description applies in 
the context of the Lorenz dynamics because orbits are clearly discernible in 
Fig. 1. The joint probability density W~(x, E, t) can then be written as 

w(e, t) 
W~(x, E, t ) -  2~b'(E)[E- V(x)] ~/2 (3.9) 

where 

fR EL- v(xtl-'J2 dx (3.10) 

and where the region of integration R includes all values of x for which 
E >~ V(x). There are two disjoint integration regions for E < 0. Substituting 
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(3.9) into the Fokker Planck equation (3.6) and integrating over x yields 
the single variable equation 

6 ~ 0 [(o- + 1) ~b(E) + O ( E ) / b  - ~ D $ ' ( E ) ]  
O--t W(E, t)= ,T~ (J'(E) WtE, t) 

0 2 ~p(E) 
+ crD ~?E~ ~'(E~) W(E, t) (3.11) 

where ~b(E), ~(E), and 0'(E) are defined by 

~(E)_= [ E -  V(x)31/2 ax 

~,(E) - f] x 2 [ E -  V(x)] I/2 & 

1 f] x 2 
'(E) - ~ [ E -  V(x)]':~ dx 

(3.12) 

(3.13) 

(3.14) 

where 

{~ b( r -1 ) - [b2 ( r -1 )2+4bE] l /2 }  1/2 if E < 0  
c~= if E>~0 (3.15) 

= {b(r - 1)+ [b2(r - 1) 2 + 4bE]1/2} 1/2 (3.16) 

Equation (3.11 ) can be solved for the stationary distribution W~.(E) of the 
energy envelope: 

1 
Ws(E) =-~-~ O'(E)e q(e)/D (3.17) 

where 

q ( E) = l  ~b + (a+ lI IE O(E')dE' 1 (3.18) 

and N is a normalization constant. 
We have calculated the distribution given by Eq. (3.17) for various 

values of D and the corresponding average energy envelope (E> and 
below we compare these with the results reported by Liicke. (6) He has plot- 
ted the first and second moments of z. All other moments appearing in 
Eq. (2.16) can be expressed in terms of these two. In particular, 
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~7 y2 1 1 ( E ) L = ~ (  ) - -~ ( r - -1 ) (x2 )+-~(x  4) 

3o- a ( o + l )  b ( r - 1 ) ( z ) -  +~-ff-)ob(z 2) 
= T + 2b 

(3.19) 

The values of ( z )  and (z 2) can be obtained from the figures in Ref. 6 and 
used to calculate (E)L.  The resulting value can be compared with ( E )  
obtained from an ensemble average. Alternatively, since the accuracy of the 
values thus read is limited, we replace (E)L by ( E )  in (3.19) and attempt 
to reproduce ( z )  and (z2). Equation (3.19) yields only one relation 
between (z )  and (z2), so that we need a second relation between them. 
We use the values of 

- ( ( z  2 } - ( z ) 2 ) / ( z  2 )  (3.20) 

reported by Liicke for this purpose. Following this procedure, we have 
plotted ( z )  and { z Z ) / r  v e r s u s  r in Fig. 2 for a set of D values. We find that 
( E )  is slightly sensitive to the value of D selected, but ( z )  and (z 2) are 
fairly insensitive to D. The agreement between Fig. 2 and the corresponding 
figure in Ref. 6 is excellent. This shows that the SDE (2.12) is consistent 
with the results from the exact dynamics. 

An important dynamical measure in the Lorenz dynamics is the 
average time lapse between two consecutive "flip-flop" transitions. This 
corresponds in the oscillator analogy to the mean first passage time from 
the interior of one stable region where the energy envelope is negative to 
the top of the barrier separating the two regions (where the envelope is 
zero). For a process starting from E=Emin and evolving according to 
Eq. (3.11) the average time it takes to reach E = 0  is given by (~8'19) 

(o [Q(E)] 20'(E) 
r,(o) = j dE (3.21) 

Em~. Daq/(E) W~(E) 

where 

Q(E) =- fL~,, W~.(E') dE' (3.22) 

The main contribution to the integral comes from the integrand near E ~ 0, 
where Q(E) is very close to unity. Therefore T~(0) may be approximated by 

1 fo (b'(E) dE (3.23) 
T,(O) =-ff~ Eo~m ~9(E) W,.(E) 
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Fig. 2. Theoretical average values of (0)  (z)  and (~) (z 2)/r as a function of r. For each 
value of r, all values of D between the two curves in Fig. 3 lead to the same value of {z) and 
of (z2)/r within the visual accuracy of this figure. 

Aizawa ~s) estimated the mean transit ion time of  the flip-flop process for 
r = 28 and found it to be 1.0/0.44. F rom Fig. 1 it is seen that  four trans- 
itions occur within a period of 4.5 units. These results indicate that TI(0 ) is 
of order unity. We calculated T,(0) for several values of D for each value of 
r plotted in Fig. 3. This figure shows the range of  D values that give rise to 
TI(0 ) between 1 and 10. It is this range of D values that has been used in 
generating Fig. 2. All D values in this range produce the same plots for 
Fig. 2. 

4. C O N C L U S I O N  

In this paper we have explored the viability of the not ion of replacing 
a set of deterministic nonlinear equations having aperiodic solutions with 
stochastic differential equations. This was first done by Knobloch  (9~ for the 
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Fig. 3. Values of the mean square level of the fluctuations D and of r that lead to a mean 
first passage time (O) TI(0)= 1.0 and (A) TI(0)= 10.0. 

Lorenz system, in which he replaced the rapidly changing z variable by a 
stochastic process. The resulting SDE described a linear oscillator with a 
fluctuating frequency. Knobloch's replacement leads to a process whose 
stability properties depend sensitively on the choice of parameter values. 
Pursuing this idea further, we replaced dz/dt by a stochastic process, 
thereby arriving at a nonlinear SDE for an anharmonic oscillator. This 
strategy models the Lorenz system by an anharmonic oscillator with a fluc- 
tuating frequency in a bistable potential, as given in Eq. (2.12). 

The model system shares several qualitative features with the Lorenz 
equations (2.1). To wit, it retains the steady states and symmetry properties 
of the latter. The stationary distribution corresponding to the SDE (2.12) 
reflects the relative time spent by the projected Lorenz trajectory at every 
point in the x ~  plane. We also made a comparison of the energy envelope 
of the oscillator and the corresponding quantity from the Lorenz model. 
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The parameter D in Eq. (2.12) [and Eq. (3.2)] can be selected if the per- 
sistence times are known for each r value. 

Finally, we note that the use of delta-correlated Gaussian fluctuations 
for ~(t) is not justified. Strictly speaking, a simulation of the full Lorenz 
dynamics should be used to study the statistical properties of ~ (it is insuf- 
ficient to know the statistics of z) and a simple form for ~(t) should be 
selected based on these properties. 
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NOTE ADDED IN PROOF 

Related work on the same problem but from a different perspective 
can be found in C. Nicolis and G. Nicolis, Phys. Rev. A 34:2384 (1986). 
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